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Abstract. In the q-deformed oscillator system, the Hopf algebraic structures of 
S U , n - o ( l )  and SUq,h(Z) are constructed in the scheme of geometric quantimtion. 
The classical andquantumrepresPntatioiispacesare analysed withrespect to whether 
or not q is a root of unity. 

1. In t roduct ion  

The quantum groups [l-lo], which are deeply rooted in many physical systems and 
theories, are q-deformations of Lie algebras with non-trivial Hopf algebraic structures. 
It is a common opinion that the deformation parameter q is connected with the Planck 
constant, i.e. According to  this statement, when ti - 0, q - 1, and 
the quantum systems reduce to classical ones, while the q-deformed symmetries are 
changed to Lie symmetries upon canonical quantization. As we stressed in 111-131, 
this is not the case in principle. In fact, the q-deformation and the A-quantization 
can be two independent processes. It is possible to find classical systems possessing 
q-deformed symmetries, and these systems become quantum ones with quantum group 
symmetries after quantization. Inversely, when we take li - 0 in the systems with 
quantumgroup symmetries, the systems become classical with q-deformed symmetries. 

This idea makes i t  meaningful to look for the validity of the quantum groups as dy- 
namical symmetries in physical systems with violations of the perfect Lie symmetries. 
As q is near unity, there are exact symmetries in view of quantum group theory, but 
small violations of the Lie symmetries are allowed, though the quantum symmetries 
certainly embrace the more general case where q is not near unity. A few attempts 
have been made in this direction in molecular physics and the problem of heavy ion 
resonances [14-161 where the violations of the Lie algebra SU(2) and simple harmonic 
oscillation are well known. 

In the q-oscillator approach, wc have shown that Lhe q-deformed algebra SU,(2) 
can be realized both at  classical and quantum levels, and the classical q-deformed 
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algebra SUp,n-o(2) is obtained by deforming the classical observables. However, an 
important problem that remains to be solved is whether for such a classical deformed 
algebra there still exists a non-trivial Hopf algebraic structure like the usual quantum 
algebras. Obviously we should solve this problem to support our point of view. The 
main purpose of this paper is to construct the Hopf algebraic structure for the classical 
deformed algebra, thus confirming our previous works [ll-13) on classical and quantum 
q-deformations of the SU(2) algebra. 

Recently, two of us (SMF and HYG) [17, 181 have solved this problem in terms 
of the geometric quantization [19] method by deforming the symplectic structure in 
addition to the classical observables on a %sphere. We will follow the key point of this 
method to  construct the Hopf algebraic structure for the classical q-deformed algebra 
SU,,,,,(2) in the q-oscillator approach. 

The difficulty in constructing the Hopf algebra for the classical q-deformed alge- 
bra is that the q-deformed algebra SUq,,,,(2) in Poisson brackets is generated by 
classical observables which form an associative but  commutative algebra under free 
multiplication between the functions. In order to construct the Hopf algebraic struc- 
ture for the classical q-deformed algebra, we have to find a set of non-commutative 
operators, such that they not only form an associative and non-commutative algebra 
(with the unit) under free multiplication but also generate the classical q-deformed 
algebra SU,,,,,(Z) in Lie brackets rather than in Poisson brackets. Once such opera- 
tors are given, it is easy to set up the Hopf algebraic structure. As pointed out in [17, 
181, in view of the geometric quantization method, such operators defined on the line 
bundle over the classical phase space of the harmonic oscillator system are nothing but 
the prequantization operators of the q-deformed observables that form the classical 
q-deformed algebra SU,,,,,(2) in Poisson brackets. Since the prequantization line 
bundle over the phase space is still classical, there should be no room for the Planck 
constant h in the set of non-commutative operators. This is a subtle but crucial differ- 
ence from the usual expression of the prequantization operators in the literature (see 
[19] and references therein). Physically, the Planck constant h is completely quantum 
characteristic. I t  should appear only after suitable polarization is taken according to  
geometric quantization. In other words, polarization turns the classical q-deformed 
algebra SU,,,,,(2) into the quantum q-deformed algebra SU,,,(2) for which the Hopf 
algebraic structure is well known. 

We also present the Classical and quantum representations of the classical q- 
deformed algebra SU,,,,,(2) and the quantum q-deformed algebra SU,,,(2), respec- 
tively, with respect t o  whether q is a root of unity or not. After the polarization, the 
classical representations reduce to the quantum ones, as they should. 

The paper is organized as follows. In $2, we investigate the Hopf algebraic struc- 
tures of SU,,n-o('2) and SU,,,(2) algebras. Section 3 is devoted to the representations 
of the above algebras, and some brief remarks and discussions are given in the last 
section. 

2. Geometr ic  quant izat ion and Hopf algebraic s t ruc tu res  of SUq,,_,(2) and 
SUq,,(2) algebras 

In order to construct the Hopf algebraic structures of the classical q-deformed algebra 
SU,(2), we first construct a set of non-commutative operators such that they form the 
SU,,h,,(2) algebra in Lie brackets. As analysed in the previous section, this can he 
reached st ?he p:eqnafi-tiza?ion !eve! by geornotric qcantization. 



Classical and quantum q-deformations of the SO@) algebra IV 5437 

I t  has been pointed out that in a classical mechanical oscillator system with Hamil- 
tonian and symplectic form 

2 

H = cfizi 
i = l  

where zi = (pi + iqi)/f i ,  ,ti = ( p i  - iqi)/&, and the classical quantities J+ = zlf2,  
J- = zzEl and J3 = 4 (zlZl - z2Z2) constitute the SU(2) algebra in Poisson brackets, 
i.e. 

[J+, J-lpB = -i2J3 [J31 J*]PB = -i(*J*). (2) 

JL = z2i; JA = J3 (3) 

[J;,J']~B = -i[2J4lq [Jj, J;JPB = -i(fJ;) (4) 

The q-deformed quantities 

J' - 
t - 122 

generate the SU,,,,,(2) algebra with the following Poisson relations: 

where the well-known relations 

1 sinh ( y z i Z i ) .  
zi ( 5 )  

1 sinh(yzii i)  2. - I  = 
Z i Z i  

f i  z! = ' ZiZi 

and 

have been applied. 

[17] is of curvature n and connection (symplectic 1-form) 
The prequantization line bundle over the phase space of the undeformed oscillators 

8 = -i(- z,drl + E2dz2). (6) 

In  terms of the geometric quantization method, the prequantization operators of the 
observable f on the phase space V (represented by zi and T i )  can be obtained by the 
following prequantization map: 

f -3 f = -i(X, - iB(X, )) + f (7) 

where X ,  is the Hamiltonian vector field o f f .  For the reasons stated in $1, here we 
do not insert the virtually irrelevant Planck constant. 

From formula (1) we have 
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Hence using (7) the prequantization versions of zi and 2, are, respectively, 

- a  a 
azi I azi wi  = - w .  = -- + f .  (9) 

with the following commutation relations: 

To obtain the prequantization operators of J L  and JA, we need a suitable ordering 
of wi and Gi.  Fromformulae (2) and (4) we have 

It  is straightforward to find their commutation relations by ( lo) ,  

Algebra (12) is isomorphic to the Poisson algebra (5). khthermore, as the polar- 
ization has not been introduced, the square integrable section space (i.e. the Hilbert 
space) is still classical. That is, the operators & and j; are still classical quantities 
and the algebras generated by them are only a classical realization of the q-deformed 
algebra in Lie brackets rather than in Poisson brackets. 

and antipodal mapping S, 
With formulae (11) and (12) we are ready to define the co-product A ,  co-unit 

These three Hopf operations are algebra homomorphisms and anti-homomorphism, 
i.e. 

A : A - A @ A  A(ab) = A(a)A(b) 

S : A - A  S(ab) = S(b)S(a) (14) 

€ : A - C  €(ab) = r(a)c(b) 
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where a, b are elements of algebra A (which is SU,n+o(2) at  present), and C is the 
field of complex numbers. The above three operations, supplemented by the identical 
mapping id and multiplication m, are consistent, i.e. 

(id 8 A)A(a) = (A @ id)A(a) 

m(id@S)A(a)  = m(S@id)A(a)  = f ( a ) .  1 (15) 

( E  8 id)A(a) = (id @ E)A(u) = a 

and compatible with the algebraic relations (12). 
Formulae (13) define neither commutative nor co-commutative Hopf algebras. 

Thus it is verified that the classical q-deformed algebra SU,,,,,(2) does possess non- 
trivial Hopf algebraic structure as the usual quantum groups do, though it  has nothing 
to do with quantization at  all. In fact, a t  the prequantization level, the uncertainty 
relation is not satisfied since the square integrable sections of the prequantization line 
bundle over the classical phase space can have arbitrarily small support. This is why 
the prequantization operators .?;L and .?; remain at  the classical level. 

In the geometric quantization approach, to quantize the system on the symplectic 
space (V,n) introduces a polarization. Let u s  take the basis of the polarization to 
be X = {a/aZ,,a/ar;} (Kahler polarization). Then from the quantum map [17],  
we obtain the quantum version of a given classical observable f if it preserves the 
polarization 

f - i = -ili(X, - iB(X,)) + J - $ha 

[ X , ,  X ]  = a X .  (17) 

(16) 

where a is determined by the formula 

Therefore we obtain the quantum operators of zi and I i ,  

with commutation relation 

[ G i , b j ]  = -li6.- 11 

Similarly, the quantum versions of J;L and J;  are 

" I  1 
J -  = 
J-- 7 sinh y z1 

a )  
j ;  = -h  (..- - 2 - a 

2 -aZ, 'arl 
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In terms of (19), j i  and j ;  give rise to the quantum q-deformed algebra SU,,,(2), 

which is isomorphic to the usual quantum algebra of SU(2), but with an additional 
parameter of h characterizing the physical quantization of the system. 

The Hopf algebraic structure of SU,,,(2) is identical to that of SUq,n-o(2) in form, 

A(j;) = j ;  @ 1 + 1 @ j ;  

A(jL) = j ;  @ q i; + q-i; @ j ;  

*I " I  
^ I  

S(.f;) = -J3 S(&) = -q J ,  

€ ( j i )  = €(& = 0 r(1)  = 1. 

It is easily checked that they are algebra (anti-)homomorphism similar to those in 
(14) and satisfy the consistency conditions in (15). 

3. The representations of the algebras SUq,,,,(2) and SUq,,(2) 

In this section, we first give the representations of SUq,,,,(2) in the preqnantization 
line bundle. After quantization, due to the polarization introduced in $2, the classical 
.An.-e-+9+;n,. mrh.r.. tn the ,...*,.ill- U;lhprt ann,-D ...h;-h *,.n.;.t. nf hnlnmnr. 
L"y'"0CL'"YY'"'L 'yY** l r u " r r D  Y" Y l l L  'IYn.Lu"Lr. I I I I V L . "  0yY.d. ..111L.l L " I . I . " Y I  Y.  ..Y.YI.I"I- 

phic sections in the Kahler polarization. In other words, they are covariantly constant 
along the polarization. 

Consider the representation of the algebra spanned by { w ,  i , w G )  with 

It is easy to see that the representation space is 

F = { f , " ,  n = O , 1 , 2  ,...) 

where 

and U is an arbitrary constant in C. It is easy to find that 

wf," = Jn?iJ,"+l 
GJ," = -hf:-l 

wGf," = nf,". 
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All the states f," can be connected by the ladder operators w and W, i.e 
v Y I Y Y 

+ - -  - 3  - 
0 . 1 . 2 .  c c c  ... c c  n ( n + l ) &  . . . .  (27) 

Now we consider the q-deformation of the above algebra. T h e  deformed generators 
are w,, W,, and wW defined by 

a w = w = z + -  
'I ai 

which satisfy the following algebraic relations: 

iW,,w,j = [woij, - rww - 11, 

'I [WW, w,] = --w 

[wW, W g ]  = os. 
The representation space is 

G = {g,", n = O , l , Z , . .  . ,a  E R} (30) 
where 

The actions of the operators on this space give rise to  

U,, W,, WW : G 3 G (32) 
or more explicitly 

The algebraic relations in (29), the classical Hilbert space in (30) and the actions of 
the generators in the Hilbert space in (33) are valid for arbitrary complex values of 
q.  However, the characteristics of the representation space are different depending on 
whether q is a root of unity or not. 

3.1. q not 5 root of unity 

The properties of the representation space of the deformed algebra are identical to 
those of the algebra without deformation. The essential property is that the states 
in the Bilbert space can aii be raised or iowered by the iadder operator w and W 
Explicitly, 

9 '  9 
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3.2. q a root of unity 

Some odd properties appear in this case. Suppose that q is the least positive integer 
satisfying q p  = f l ,  then [PI, = 0. Therefore the representation space splits into 
infinite indecomposable invariant subspaces as shown in the following chain of states: 

This is due to  the fact that ,  when we act on the states, 

w; = o  (n 2 P) (36) 

w;g;-l = 0 w;g& = U  [ n = i , 2 ,  ...j. (37) 

and therefore 

Although there are such unusual relations, the Lusztig-like operator 

L = -  w: 
[PI,! 

is still well defined regardless of the nilpotencies of [PI, and w;.  Therefore the states 
defined in (31) avoid possible nilpotencies. 

It should be mentioned that the SU,(2) algebra at the prequantization level can 
he realized by the above prequantized differential operators as follows: 

j ! - - j w w  1 - w W  
3 - 2  A .  

I t  is not difficult to  check that the SU,(2) algebraic relations hold: 

sinhy - pi, 2-1 = - [ 2 4 ] ,  
7 

Now we are in a position to  consider the representations of the SU,(2) symmetry in 
the prequantized system. The representation spaces should be the tensor products of 
theHilbert spacesofthealgebrasgenerated by {wi,,,w;,,wilji) with i = 1 , 2 .  Therefore 
the j states are 
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All the properties of the SU,(2) algebras supplied by [9] and [lo] can be verified 
using the above explicitly constructed representations. But it should be noted that 
every state y,m) defined above is related to two arbitrary complex numbers a and 
p, and therefore every j state is accompanied by a factor exp(af,  + p i z ) .  This is the 
main difference between the SU,(2) symmetry in prequantized and quantum systems. 

After the Kahler polarization, we arrive at the quantum system and now the 
antiholomorphic parts in generators (28) and representation (30) vanish, and therefore 
a,p - 0. The representation in (30) becomes 

- 
G =  {gn, n =  0,1,2,.. .} 

The representation spaces for SU,,,(2) in (20)-(22) should be the tensor products of 
the Hilbert spaces ofthe algebrasgenerated by { i j i q , w i q , ~ i ~ i }  with i = 1 , 2 .  Therefore 
the j states are 

4. Remarks and discussions 

In this paper we have constructed the Hopf algebraic structures for both SUp,,-,(2) 
and SU,,,(2) in terms of the geometric quantization method. The corresponding 
representations are also discussed in detail. Although we have dealt with the particular 
algebra of SU,(2), the principle of the method presented in [17, 181 and this paper 
can he applied to more general cases more or less straightforwardly. 

The Hopf algebraic structure for the SU,n-o(2) algebra is of some significance as 
i t  makes SU,n-o(2) a quantum algebra in the usual sense. Also, provided that 

J ,  J -  + J,' = si (44) 

with so a constant (the total angular momentum), the objects J i  and Jj satisfy [I81 

(sinh y Jj)z - (sinh ys,)' J; JI + - 
y sinh y 7 sinh y (45) 

Equation (45) defines a q-deformed sphere of the manifold S,' which is related to 
the q-deformed Hopf bundle S3 + S i  and therefore the q-deformed monopole as the 
manifold Sz defined by equation (44) is related to the usual IIopf bundle S3 -+ Sz 
and therefore the monopole [18]. Hence there is also a relation between the oscillator 
approach of the q-deformation of the SU(2) algebra and the monopole as well as the 
q-monopole descriptions. 

The representations of SU,,,,(2) and SU(2) presented in this paper a t  prequan- 
tization level are very intriguing. There should be some physical meaning and appli- 
cations in classical mechanics, which will be exploited elsewhere. 
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