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Abstract. In the g-deformed oscillator system, the Hopf algebraic structures of
SUg a—o{2) and SUy (2} are constructed in the scheme of geometric quantization.
The classical and quantum representation spaces are analysed with respect to whether
or not ¢ is a root of unity.

1. Introduction

The quantum groups [1-10], which are deeply rooted in many physical systems and
theories, are g-deformations of Lie algebras with non-trivial Hopf algebraic structures.
It is a comnmon opinion that the deformation parameter g is connected with the Planck
constant, i.e. Ing oc A. According to this statement, when A — 0, ¢ — 1, and
the quantum systems reduce to classical ones, while the g-deformed symmetries are
changed to Lie symmetries upon canonical quantization. As we stressed in [11-13],
this is not the case in principle. In fact, the g-deformation and the H-quantization
can be two independent processes, It is possible to find classical systems possessing
g-deformed symmetries, and these systems become quantum ones with quantum group
symmetries after quantization. Inversely, when we take i — 0 in the systerns with
quantum group symmetries, the systems become classical with g-deformed symmetries.

This idea makes it meaningful to lock for the validity of the quantum groups as dy-
As ¢ is near unity, there are exact symmetries in view of quantum group theory, but
small violations of the Lie symmetries are allowed, though the quantum symmetries
certainly embrace the more general case where ¢ is not near unity. A few attempts
have been made in this direction in molecular physics and the problem of heavy ion
resonances [14-16] where the violations of the Lie algebra SU(2) and simple harmonic
oscillation are well known.

In the g-oscillator approach, we have shown that the g-deformed algebra SU, (2}
can be realized both at classical and quantum levels, and the classical ¢-deformed
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algebra SU_ ;_,(2) is obtained by deforming the classical observables. However, an
important problem that remains to be solved is whether for such a classical deformed
algebra there still exists a non-trivial Hopf algebraic structure like the usua! quantum
algebras. Obviously we should solve this problem to support our point of view. The
main purpose of this paper is to construct the Hopf algebraic structure for the classical
deformed algebra, thus confirming our previous works [11-13] on classical and quantum
g-deformations of the SU(2) algebra.

Recently, two of us (SMF and HYG) [17, 18] have solved this problem in terms
of the geometric quantization [19] method by deforming the symplectic structure in
addition to the classical observables on a 2-sphere. We will follow the key point of this
method to construct the Hopf algebraic structure for the classical g-deformed algebra
SU, n—o(2) in the g-oscillator approach.

The difficulty in constructing the Hopf algebra for the classical ¢-deformed alge-
bra is that the g-deformed algebra SU_j_4(2) in Poisson brackets is generated by
classical observables which form an associative but commutative algebra under free
multiplication between the functions, In otder to construct the Hopf algebraic struc-
ture for the classical g-deformed algebra, we have to find a set of non-commutative
operators, such that they not only form an associative and non-commutative algebra
{with the unit) under free multiplication but also generate the classical g-deformed
algebra SU, ,_.,(2) in Lie brackets rather than in Poisson brackets. Once such opera-
tors are given, it is easy to set up the Hopf algebraic structure. As pointed out in 17,
18], in view of the geometric quantization method, such operators defined on the line
bundle over the classical phase space of the harmonic oscillator systemn are nothing but
the prequantization operators of the ¢-deformed observables that form the classical
g-deformed algebra SU,, 5_,0(2) in Poisson brackets. Since the prequantization line
bundle over the phase space is still classical, there should be no room for the Planck
constant % in the set of non-commutative operators. This is a subtle but crucial differ-
ence from the usual expression of the prequantization operators in the literature (see
(19] and references therein). Physically, the Planck constant % is completely quantum
characteristic. It should appear only after suitable polarization is taken according to
geometric quantization. In other words, polarization turns the classical ¢-deformed
algebra SU_ (2} into the quantum g-deformed algebra SU_ ,(2) for which the Hopf
algebraic structure is well known.

We also present the classical and quantum representations of the classical ¢-
deformed algebra SU, ;. ,,(2) and the quantum g-deformed algebra SU, ;(2), respec-
tively, with respect to whether ¢ is a root of unity or not. After the polarization, the
classical representations reduce to the quantum ones, as they should.

The paper is organized as follows. In §2, we investigate the Hopf algebraic struc-
tures of SU, ;_ 4(2) and SU_ ;(2) algebras. Section 3 is devoted to the representatlons
of the above algebras, and some brief remarks and discussions are given in the last
section.

2. Geometric quantization and Hopf algebraic structures of SU_ ,_,(2) and
SU, »(2) algebras

In order to construct the Hopf algebraic structures of the classical g-deformed algebra
SU,(2), we first construct a set of non-commutative operators such that they form the
SU, p.of2) algebra in Lie brackets. As analysed in the previous section, this can be

ronr-l-u:hfl at tha nronantizatinn level hy crr-nmpfrlr onantization
LCGVIICA Gv vlib PIUyUuaiiniaa uiisin sv e oy suvanatuil Qi Lt uiet.
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It has been pointed out that in a classical mechanical oscillator system with Hamil-
tonian and symplectic form

2
i=1

2
Q=-i) dz;Adg (1)
i=1

where z; = (p; +ig;)/V2, Z; = (p; — ig;)/V/2, and the classical quantities J, = z, 7,
J_ =27 and J3 = 1 (2% — 2,7,) constitute the SU(2) algebra in Poisson brackets,
Le.

[J+1J-]PB = —i2Jy Vs Jilpp = —i(£J;). (2)
The g-deformed quantities

I =n% T. = 57 Ty = J (3)
generate the SU_ , (2} algebra with the following Poisson relations:

[Ji-' J:-]PB = "i[QJ:'a]q [Jé, J:!:}PB = -i(ﬂ:']'i) (4)

where the well-known relations

S = 1 sinh (y2; %) i . 1 sinh (y2;) _ (5)
i \/7’311111';( zifi : i v‘}(SiHh“,{ zl".';i :
and
qx — q'-.'l'
z], = ———
l=l, g—g!

have been applied.
The prequantization line bundle over the phase space of the undeformed oscillators
[17] is of curvature 2 and connection (symplectic 1-form)

In terms of the geometric quantization method, the prequantization operators of the
observable f on the phase space V (represented by z; and Zz;) can be obtained by the
following prequantization map:

f— F=—i(X, -i8(X,)) + f (7)

where X, is the Hamiltonian vector field of f. For the reasons stated in §1, here we
do not insert the virtually irrelevant Planck constant.
From formula (1) we have
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Hence using (7) the prequantization versions of z; and #; are, respectively,

9 _ 8
wip=—gotE Y= (9)

with the following commutation relations:
[“‘"’i:wj] = _6:'1" (10)

To obtain the prequantization operators of J§ and J4, we need a suitable ordering
of w; and @;. From formulae (2) and (4) we have

1wy -
m w—2 smh(‘ywzwz)

Jy =
J = 1w sinh(yw,o,) (11)
T W/ysinhyuw, ™
J3 = $w1@) — wyid,).
It is straightforward to find their commutation relations by {10},
T 1. Tt T Tt
Iy, Jl]= -_;smh (27.]3) [J3,J5] = £J%. (12)
Algebra (12) is isomorphic to the Poisson algebra (5). Furthermore, as the polar-
ization has not been introduced, the square integrable section space (i.e. the Hilbert
space) is still classical. That is, the operators J} and Jj are still classical quantities
and the algebras generated by them are only a classical realization of the ¢-deformed
algebra in Lie brackets rather than in Poisson brackets.

With formulae (11) and (12) we are ready to define the co-product A, co-unit ¢
and antipodal mapping S,

A =T01+18J]

AUy =liedi+a el

S(J3) = -J3 S(Ja) = —¢*'J}

e(Ji) =€) =0 «1)=1 (13)

These three Hopf operations are algebra homomorphisms and anti-homomorphism,
ie.

A:A—AQA A(ab) = A(a)A(b)
S:A— A S(ab) = S(b)S(a) (14)
€:A—=C e(ab) = e(a)e(b)
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where a, b are elements of algebra A (which is SU_,_,((2) at present), and C is the
field of complex numbers. The above three operations, supplemented by the identical
mapping id and multiplication m, are consistent, i.e.

(id® A)A(a) = (A ®id)A(a)
m(id @ §)A{a) = m(S @ id)A(a) = ¢(a) - 1 (15)
(e ® id)A(a) = (id ® )Afa) = a

and compatible with the algebraic relations (12).

Formulae (13) define neither commutative nor co-commutative Hopf algebras.
Thus it is verified that the classical ¢-deformed algebra SU, ,_,(2) does possess non-
trivial Hopf algebraic structure as the usual quantum groups do, though it has nothing
to do with quantization at all. In fact, at the prequantization level, the uncertainty
relation is not satisfied since the square integrable sections of the prequantization line
bundle over the classical phase space can have arbitrarily small support. This is why
the prequantization operators Ji and J4 remain at the classical level.

In the geometric quantization approach, to quantize the system on the symplectic
space {V, Q) introduces a polarization. Let us take the basis of the polarization to
be X = {8/8z,,0/0%,} (Kahler polarization). Then from the quantum map [17],
we obtain the quantum version of a given classical observable f if it preserves the
polarization

[ f = —i(X, ~i8(X})) + f ~ }ifia (16)
where a is determined by the formula

[X;, X} =aX. (17)
Therefore we obtain the quantum operators of z; and Z;,

R 8

@, =z w; = ﬁa_z,- (18)
with commutation relation

[&;, &;] = ~hb;. (19)
Similarly, the quantum versions of J4 and Jj are

s 1 i}

= e—— h | vk
T+ \/7smh'y E 2, (7 282, )
o 1 oz ( 3 )
= 2 ginh ( yhz, 5 20
.= vysinhy sinh { ¥ ?1 dz, (20)
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In terms of (19), /4 and J} give rise to the quantum g-deformed algebra SU, 4 (2),

sinh v Sinh (2Tj::x)
Y sinh v

[, /1] = (/3. J4] = BJ, (21)
which is isomorphic to the usual quantum algebra of SU(2), but with an additional
parameter of /i characterizing the physical quantization of the system.

The Hopf algebraic structure of SU, ,(2) is identical to that of SU_ ,_,(2) in form,

Al =di0l+10J4

Ay =Jiedi +qhie

i

5(J5) =4 S(Jq) = —g*1J}

f(JL) =e(Jp) =0 f(1)=1, (22)

It is easily checked that they are algebra (anti-)homomorphisms similar to those in
(14) and satisfy the consistency conditions in (15).

3. The representations of the algebras SU_;_,(2) and SU_,(2)

In this section, we first give the representations of SU,_ ,_,(2) in the prequantization
line bundle. After quantization, due to the polarization introduced in §2, the classical

reanracantatinn enarcre radiirae ta tha Aanantnm Hilhert enacrs whirh caneicte nf halamnr.
FCPICECTIvaI0H Spall TCGULES LU WiC qualivuill 0LoETw SPace WINIGH CONsisws Ut HGCINeT

phic sections in the Kahler polarization. In other words, they are covariantly constant
along the polarization.
Consider the representation of the algebra spanned by {w, &, w&} with

w=2z+4+ 5‘5
i}

D= ——. 2

“ Oz (23)
It is easy to see that the representation space is

F={ff n=012,..} {(24)
where

a __ (2’ + a)n aZ
fr= 12 (25)

and o is an arbitrary constant in C. It is easy to find that
wipg =vn+1fi,
B8 = VAL, (26)

wafy =nfl.
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All the states f can be connected by the ladder operators w and @, i.e.

02 1522 « oona (nel) o oo, (27)
— — — — — —

Now we consider the g-deformation of the above algebra. The deformed generators
are w,, @, and wo defined by

wq =—w=2z+4 %
o1 [wa],
Wy = ;[ww]q =u— (28)
which satisfy the following algebraic relations:
[waaq] = iwd}]q - [wa} - l]q
[wé,w)] = ~w, (29)
[wo,2,] = &,.
The representation space is
G={¢, n=0,12. . ,aeR) (30)
where
o_(zta) .z Wi o
g = e = T, (31)
" Il [n],!
The actions of the operators on this space give rise to
Wy By, wd: G—G (32)
or more explicitly
“’gg: =[n+ 1]49':4-1
Gefn = a1 (33)

wlgy = ngh.

The algebraic relations in (29), the classical Hilbert space in (30) and the actions of
the generators in the Hilbert space in (33) are valid for arbitrary complex values of
q. However, the characteristics of the representation space are different depending on
whether ¢ is a root of unity or not.

3.1. q not u rool of unity

The properties of the representation space of the deformed algebra are identical to
those of the algebra without deformation. The essential property is that the states

L I + 3 3 ORI | B TR R DU T | R T . 1 -
111 LEé ADErt space can aill bc ralsed or iowered DY Lne [adder operator w? and wq.
Explicitly,
—_— e —_— — —_— —
0 Gq 1 g 2 @q o n = (ﬂ+ 1) Gq LI (34)

—_ — — — T —_—
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3.2. q a root of unity

Some odd properties appear in this case. Suppose that ¢ is the least positive integer
satisfying ¢* = +1, then [p], = 0. Therefore the representation space splits into
infinite indecomposable invariant subspaces as shown in the following chain of states:

—_—  — — Gy  — vy — N
0 Gq 1 @q 2 @ 77 P a (p - 1) P o (p + 1) b T (35)

This is due to the fact that, when we act on the states,

wy =0 (n2p) (36)
and therefore
Wygp-1 =0 Wy ghpo1 =0 (n=1,2,..). (37)

Although there are such unusual relations, the Lusztig-like operator
p
¢
[r],!

is still well defined regardless of the nilpotencies of [p], and wf. Therefore the states
defined in (31) avoid possible nilpotencies.

It should be mentioned that the SU_ (2) algebra at the prequantization level can
be realized by the above prequantized differential operators as follows:

- inh
L= [ ey, (39)

It is not difficult to check that the SU (2) algebraic relations hold:

L (38)

= = sinh -,
[, 0= ,/"[wa]q
[J3, Ji] = 2J. (40)

Now we are in a position to consider the representations of the SU (2} symmetry in
the prequantized system. The representation spaces should be the tensor products of

the Hilbert spaces of the algebras generated by {w, ,w;,,w;@; } withi = 1,2. Therefore
the j states are

igr%ig»

_ (qu)j+m (qu)j+m
7+ mt [~ m]!

i, m)a exp(az; + )

= 0Sm @9 m (41)
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All the properties of the SU,_(2) algebras supplied by [9] and [10] can be verified
using the above explicitly constructed representations. But it should be noted that
every state |j,m) defined above is related to two arbitrary complex numbers o and
[, and therefore every j state is accormnpanied by a factor exp(aZ, + B%,). This is the
main difference between the SU (2) symmetry in prequantized and quantum systems.

After the Kahler pola.nza.tlon, we arrive at the quantum system and now the
antiholomorphic parts in generators (28) and representation (30) vanish, and therefore
o, — (. The representation in (30) becomes

G={j,, n=0,1,2,...}

‘:,ﬂ

= — =—d.7..
n [n]q! [n]q!go (42)

The representation spaces for SU, 4(2) in (20)- (22) should be the tensor products of

the Hilbert spaces of the algebras generated by {&; @; } with i = 1, 2. Therefore

ig! n}’ l l
the 7 states are

(‘:"lq)j-'—m (QZq)j-I-m
G+m] [f~m]!

Ul m)aﬁ =

4. Remarks and discussions

In this paper we have constructed the Hopf algebraic structures for both SU, ;_ (2}
and SU, ;(2) in terms of the geometric quantization method. The corresponding
representations are also discussed in detail. Although we have dealt with the particular
algebra of SU,(2), the principle of the method presented in {17, 18] and this paper
can be applied to more general cases more or less straightforwardly.

The Hopf algebraic structure for the SU ,_4(2) algebra is of some significance as
it makes SU 5 4(2) a quantum algebra in the usual sense. Also, provided that

T+ =8 (44)
with s, a constant (the total angular momentum), the objects J| and J§ satisfy [18]

(sinh yJ4)? _ (sinh ys,)?
ysinh vy ¥sinhy

Jidl + (45)
Equation (45) defines a g-deformed sphere of the manifold ng which is related to
the g-deformed Hopf bundle S — S? and therefore the g-deformed monopole as the
manifold S? defined by equation {44) is related to the usual Hopf bundle $% — 52
and therefore the monopole [18]. Hence there is also a relation between the oscillator
approach of the g-deformation of the SU(2) algebra and the monopole as well as the
g-monopole descriptions.

The representations of SUqh_,O(Q) and SU(2) presented in this paper at prequan-
tization level are very intriguing. There should be some physical meaning and appli-
cations in classical mechanics, which will be exploited elsewhere.
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